24 research outputs found

    Effectiveness of Space Spraying on the Transmission of Dengue/Dengue Hemorrhagic Fever (DF/DHF) in an Urban Area of Southern Thailand

    Get PDF
    Timely and extensive space spraying has been widely used to prevent the spread of dengue fever/dengue hemorrhagic fever (DF/DHF). Field evaluations on its effectiveness have been rarely reported. This study aimed to evaluate the timeliness, coverage, and effectiveness of space spraying for DF/DHF control using a geographic information system (GIS). Longitudinal monitoring of DF/DHF cases and spray activities in Songkhla municipality was done between May 2006 and April 2007. After a case was detected, subsequent cases occurring within a 100 meter radius of the index case's house and between 16–35 days of onset were considered as potential secondary cases. During the study period, 140 cases of DF/DHF were detected. Of these, 25 were identified as secondary infections from 20 index cases. Where a secondary infection occurred, the mean attack rate was 2.7 per 1,000 population. Two significant predictors for being a secondary case were both related to the house of the index case, namely, absence of window screens and being constructed with corrugated iron sheets. Our findings suggest that space spraying in the study area was inadequate and often failed to prevent secondary cases of DF/DHF. Control programs should target houses constructed with corrugated iron sheets

    Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Get PDF
    BackgroundTransmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Methods and findingsCluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children.ConclusionsOur data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases

    Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    Get PDF
    Background: Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages. Methodology/Principal Findings: Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile ‘‘index’’ cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80–100 meters away (pAe. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (pAe. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes. Conclusions/Significance: Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission)

    Relationship between Transmission Intensity and Incidence of Dengue Hemorrhagic Fever in Thailand

    Get PDF
    An infection with dengue virus may lead to dengue hemorrhagic fever (DHF), a dangerous illness. There is no approved vaccine for this most prevalent mosquito-borne virus, which infects tens of millions (or more) people annually. Therefore, health authorities have been putting an emphasis on reduction of vector mosquitoes, genus Aedes. However, a new mathematical hypothesis predicted, quite paradoxically, that reducing Aedes mosquitoes in highly endemic countries may “increase” the incidence of DHF. To test this hypothesis based upon actual data, we compared DHF incidence collected from each of 1,000 districts in Thailand to data of Aedes abundance, which was obtained by surveying one million households. This analysis showed that reducing Aedes abundance from the highest level in Thailand to a moderate level would increase the incidence by more than 40%. In addition, we developed computer simulation software based upon the above hypothesis. The simulation predicted that epidemiological studies should be continued for a very long duration, preferably over a decade, to clearly detect such a paradoxical relationship between Aedes abundance and incidence of DHF. Such long-term studies are necessary, especially because tremendous efforts and resources have been (and perhaps will be) spent on combating Aedes

    High resurgence of dengue vector populations after space spraying in an endemic urban area of Thailand: A cluster randomized controlled trial

    Get PDF
    Objective: To examine the resurgence rate, house density index (HDI) and parous rate of the Aedes aegypti vector after space spraying carried out by the routine spraying team, and compare with the rates after standard indoor ultra low volume (SID-ULV) spraying carried out by the trained research spraying team. Methods: Between March and September 2014, a cluster randomized controlled trial including 12 clusters (6 regular ULV, 6 SID-ULV) with totally 4341 households was conducted, and around 20–31 houses in each cluster were selected for assessment. The parous rate and HDI of collected mosquitoes 2 days before and 1, 2 and 6 days after spraying were obtained and compared. Results: The HDI dropped significantly from the baseline 1 and 2 days after spraying to a non-zero value in the SID-ULV treated locations but not in the regular ULV group locations. However, by 6 days after spraying, the HDI of both groups had returned to the base value measured 2 days before spraying. There were no statistically significant differences in the parous rate between groups. Conclusions: SID-ULV is more effective in reducing Aedes aegypti populations. However, rapid resurgence of dengue vector after spraying in urban areas was observed in both groups

    Epidemic of New Chikungunya Viral Genotype and Clinical Manifestations in Thailand

    No full text
    Abstract Introduction This was the fi rst Chikungunya epidemic of the Central-east African genotype in Thailand from 2008 to 2009
    corecore